
c *I 

b 

Letters to the Editor L91 

1 ns. Defining n2 from T Z ~ E , , , ~  = 8  x 
ping length for 4 times the threshold power 

n density required for self focusing is inversely proportional to the 

be formed during the cascade breakdown but might 

. 4 ;  

volume rate o 

and the results were 1.7 x lo9, 0.6 x lo9 and 3.4 x lo9 

ionization rates of 1 

that self trapping and breakdown 
Heating by the laser beam in 

of the filament consistent with o 
free electron mechanism, if the fi 
1 atm argon.with typically ne = 

cesses discussed above will cause destruction 
tal observations. For example, for the 
er is 6 MW in a plasma formed from 

mechanism involves a weakly absorbing condi 
would not be significant prior to the formation 
would occur afterwards. 

In conclusion it appears that the excited state 
several millimetres long focal region of the beam use 

lament though gas breakdown 

ism could operate in the 
work and that differences 

E 
We are grateful to the following bodies for supporting this w k: Science Research 

Council; UKAEA Culham; Northern Ireland Ministry of Edu tion; to Professor 
D. J. Bradley for provision of research facilities and to Dr G. H. . New for valuable 

discussions. a 
Department of Pure and Applied Physics, 
The  Queen’s University of Belfast, 
Belfast, 
Northern Ireland. 

M. H. KEY 



L92 Letters to the Editor 

AHMAD, N., GALE, B. C., and KEY, M. H., 1969, J. Phys. B : Atom. molec. Phys., 2,403-9. 
ALCOCK, A. J., DE MICHELIS, C., KOROBKIN, V. V., and RICHARDSON, M. C., 1969, Appl. Phys. 

ARMSTRONC, J. A., BLOEMBERGEN, M., DUCUING, J., and PERSHAM, P. S., 1962, Phys. Rev. 127, 
Lett. 14, 145. 

1918. 

b 

Configuration-space three-body scattering theory 
I 

Abstract. Results are quoted for the 'physical' three-body transition operator 
yielding the volume-independent three-body reaction coefficient, in terms of 
which one computes the three-body elastic scattering rate when three initially 
free independently moving particles collide under the influence of short-range 
forces. 

/' 

Consider the scattering of three particles, ec = 1, 2, 3, which for the purposes of 
this work may be considered elementary, spinless and distinguishable. A major 
objective of the theory is to determine the physical three-body reaction coefficient 

@(i -+ f )  G(ki --f k,) = @(kIi, k2,, k,, -+ klr, k2f, k3,) 
expressing the probability of three-body elastic scattering in the laboratory system, 
from initial momenta hk,, = rn,v,, to final momenta kk,,. The  reaction coefficient ZZ 
is related to observation by 

d(ki + k,) = NlN2N3~@(ki + k,) 

where ei, dk,, dk,, dk,, is the observed number of scatterings per unit time into 
wave-number ranges dk,,, dk,,, dk,, in a (large) volume T containing N ,  particles IX 
per unit volume moving with the precise velocities a,. Presumably d / ~  should be 
independent of T, that is presumably in a correctly formulated theory the computed 
reaction coefficient 5 will be independent of T. 

If only by analogy with known results (Messiah 1962, Gerjuoy 1958) for collisions 
between two incident bodies one expects that 

@(k, +kf)  = T ~ - ' ( h ) - ~ l T ~ ( k i  3 kf126(Ef-Ei)S(Kf-Kf) (1) 
where E and hK are respectively the total energy and momentum in the laboratory 
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system, and where 

is the centre-of-mass system matrix element of the 'physical' three-particle transition 
operator Tt between initial and final plane wave states 4. A determinative definition 
of Tt-f is not immediately apparent. What is apparent is that (granting the validity of 
equation (1)) the physical transition operator Tt must differ from the customarily 
employed 'total' transition operator 

Tt(k, + k f )  = <flTt l i )  = $f*Z't$, 

T(E) = V -  V{G'+'(E)}V 
where V is the total interaction and G(+) is the outgoing total Green function. The  
centre-of-mass system matrix elements 

<f lTl i )  = I,$*?'$~ (2) 
contain S-functions (Weinberg 1964, Watson and Nuttall 1967) in addition to those 
already appearing in equation (1) which-when directly inserted into (1)-make the 
right-hand side of (1) proportional to the squares of S-functions, that is make equa- 
tion (1) mathematically meaningless. Re-interpretation of the squared S-functions 
along lines (Gerjuoy 1958) which yield sensible results for reaction coefficients in 
two-body collisions, for example 

{6(Kf-K,)}2 = ( Z T ) - ~ S ( K , - K , ) ! ~ R  exp{i(K,-K,). R) 

= (277-3S(Kf-Ki)JdR 2: (ZT) -~TS(K~-KJ  (3) 

would lead to a three-body esI depending on the volume T,  that is to an inconsistency 
with the presumption that the number of three-body scattering events in T should be 
strictly proportional to 7 in the limit T + 00. Thus the centre-of-mass matrix elements 
(flZ'tli) must not contain the &functions present in equation (2). 

The  foregoing assertions have motivated me to seek a configuration-space deriva- 
tion of equation (1) and of a closed form expression for Tt. Some of the results1 of 
this quest are quoted below, without proof.§ A configuration-space approach has been 
adopted because: (i) derivations of equation (1) in the literature (Lippmann and 
Schwinger 1950, Gell-Mann and Goldberger 1953, Brenig and Haag 1963) do not 
distinguish between T and Tt,  and customarily are couched essentially ab initio in the 
momentum representation (which also happens to be the most natural representation 
for utilization of diagrammatic methods) ; (ii) previous investigations (Gerjuoy 1958) 
have shown that formulating scattering theory in configuration space can be both 
useful and instructive. I n  their totality the configuration-space results obtained do 
furnish a welcome confirmation of the general correctness of the customary 
momentum-space procedures, which usually attain their goals (e.g., a derivation of 
equation (1)) much more rapidly than do configuration-space procedures. Of course, 
this confirmation would be gratuitous were it not for the facts that the configuration- 
space and momentum-space formulations each involve some questionable mathematical 

?Barred and unbarred symbols regularly will denote corresponding quantities in the centre- 
of-mass and laboratory systems respectively. 

$ Early results have been reported by Gerjuoy (1969). 
5 The detailed analysis leading to these results is much too long to be reproduced here, and 

will have to be published elsewhere. 



L94 Letters to the Editor 

manipulations, after starting from equally questionable and by no means obviously 
identical physical assumptions. I n  essence, the work on three-three elastic scattering 
reported here can be considered to be a first step in the direction of deducing correct 
formal expressions for three-three reactions between composite systems; in the field 
of chemistry such reactions are important and often measurable. 

Let 
'r,c+'(E) = $,(E) + @:+)(E) (4) 

be the properly and uniquely specified (e.g., via the Faddeev equations (Faddeev 
1961)) solution to Schrodinger's equation describing the collision between particles 
1, 2, 3 in the initial plane wave state 

#,(E) = exp{i(kl, . rl + k2, . r2 + k3, . r3)} = exp(ik, . r )  

where, for simplicity, it is supposed that all forces are short range. Define 6 : ( + ) ( r ;  E )  
to be that part of %,(+)(r ;  E )  which behaves asymptotically like the centre-of-mass 
system free space Green function 

GF(+)(tl, r2,  r,; r l r ,  r2', r3'; E )  = GF(+)(r; r'; E )  
when rl, r2, r3 each approach infinity in such a fashion that no raS = ra- rs remains 
finite. Then I assume that the physical three-body elastic scattering is described by 
6it(+)(E). Now, computing the contribution made by Glt(+)  to the centre-of-mass 
system outgoing probability current (which determines the reaction coefficient in the 
time-independent configuration-space formulation of scattering theory) one finds 
equation (3) holds, with Tt(k,  --f k,) given by 

I n  equation (5 ) ,  the notation denotes that infinity is being approached parallel to a 
direction vf-in the nine-dimensional configuration space subtended by It, r2, r3- 
along which no raS remains finite as every ra = ranai approaches infinity, where 
n,, is the direction of ra in  physical space; vf is specified by n,, and the limiting ratios 
ra/rB.  The final momenta hk,, are in turn specified by v,, lie along n,,, and have 
their expected magnitudes for scattering into directions n,,. Furthermore, C,(E) is a 
known constant, depending on E and the particle masses ?nu, while 

(m1 + vi?, + ???3)p2 = 2k-2(m1m,r122 + ?112?123r232 f m3??z1T312). 

The scattered wavc ) in equation (4) can be written in the form 

Ot+)  = al; + )  + a,3( + )  + + )  + a;;)+ (D;:+'+ 0;:) + (6) 
where 

(D,,'+' = - ( H I ,  - E - ic) - VI&(k'), etc. 

(Dl',+) ~ a(+) 2331 + ~ ( 2 f ; i 2  = -(H23-E-iE)-'V23(~31(+)+ (~12+) ) ,  etc. (7) 

The quantity a12(+) is the laboratory systeiii scattered wave when particles 1, 2, 3 
collide in the absence of interactions other than Vlz ( r l z ) ;  in other words, (Dlz (+)  is 
that part of ai(+) which is associated with the bubble diagram of figurc l(a). The 
corresponding centre-of-mass system Sr2(+)( r )  has a plane wave factor in configura- 
tion space, denoting the fact that, during the collision represented by figure l(a), 
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particle 3 moves with constant velocity relative to the centre-of-mass of the entire 
1 ,2 ,  3 system. Therefore, no parts of qaB(+) behave asymptotically like the every- 
where outgoing GF(+) ( r ;  r'; E )  as r + cojlv,, i.e., no parts of SOB(+)  should be 
included in Gtl+). 

I- 

3- - - 2 2  + _TT_ + x +... ; ;= 
3 

(0) 

3 1  ;-* 3 Js 
(b) (C) 

Figure 1. Scattering diagrams: (a) two-particle scattering between 1 , 2  wherein 3 
is present but non-interacting; (b)  double scattering, first between 1, 2 and then 

between 2, 3 ; ( c )  a typical triple-scattering diagram. 

T h e  quantities @iF) in equation (6) are the parts of Qi (+)  associated with double- 
scattering bubble diagrams; for example, the term in equation (7) is associated 
with the diagram of figure l ( b ) .  It can be shown that the corresponding &zi,(r)  
contains contributions behaving like p W z  as r + co llv,; therefore 5it(+) cannot 
include all parts of @v), because GF(+)(r; r') N p - 5 / 2  as r + coI/v,. On the other 
hand, SGi2(r)  also contains contributions behaving like ,-5!2 as r --f coIIvf, and 
these should be included in Git(+). The  remaining @,id(+) contribution to is 
associated with the set of all triple-order (e.g., figure l(c)) and higher-order bubble 
diagrams. It can be seen that G)id(+)(r) behaves asymptotically like GF(+)(r; r') as 
I -+ co Ijv,, except along an inconsequential subset vf' of lower dimensionality (than 
the five-dimensional manifold spanned by vf in the centre-of-mass system). 

It now can be concluded that the physical transition amplitude Tt(k, +k,) 
includes all matrix elements corresponding to triple- and higher-order bubble 
diagrams. I n  addition, Tt(ki -+ k,) includes the matrix elements corresponding to the 
double-scattering bubble diagrams of type figure 1(b), if and only if each two- 
particle scattering fails to conserve energy, that is if and only if the intermediate 
state (located in figure l (b)  at the broken line) lies off the energy shell. In  other words, 
the parts of G$;,(r) behaving like p - 2  as r -+ coIIv, are associated with those bubble 
diagrams figure l(b) for which the intermediate state lies on the energy shell, Le., for 
which the individual bubbles in figure l ( b )  represent actual (because they are energy- 
conserving) two-particle scatterings ; of course, momentum always is conserved in each 
bubble (two-particle scattering) in figure l(b).  The matrix elements corresponding to 
the various diagrams in figure 1 are computed in accordance with the usual rules 
(Weinberg 1964, Watson and Nuttall 1967). I n  particular, the contribution of 
figure l (b)  to Tt(ki + k,) is 

where p12 is the reduced mass of 1, 2; tlzi is the purely two-body transition operator 
for scattering of particles 1, 2 evaluated at energy Elzi = t i 2Kl2~ /2p l2 ,  and similarly 
for t,,,; p12(q- a,) = hk,,, etc.; and A ,  B ,  which denote momentum vectors in the 
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intermediate state, are completely specified by the given initial and final momenta 
k,, k,. At A2 = k12?, the intermediate state in figure l(b) lies on the energy shell, 
and the right-hand side of equation (8) is replaced by zero. 

If order of integration and lim r +- co IIv, could be interchanged in 

(H23 - E - ie) - V2aQ12' + ) 

the scattered wave contribution &gi2(r) would behave like GF(+)(r; r') as r -+ coIIvf, 
because in this limit C23'+'(r; r') (R23 - E-ie)-l behaves asymptotically like 
GF(+)(r; r'). Obviously this interchange must be unjustified, since we already know 
GZi2( r )  does not behave asymptotically like CF(+)(r; r'). Nevertheless, if the inter- 
change is performed one obtains the obvious analogue of equation ( 5 ) ,  which analogue 
defines the contribution Z"2312(ki -+ k,) made to Z"(ki -+ k,) by the qgi? part of Gi(+). 
One finds Z"2312(ki -+ k,) is precisely the usual matrix element associated with the 
diagram figure l(b) ; when written in configuration space this matrix element is seen to 
contain a contribution proportional to 6(K12,2 - A2). The  same &function contribution 
is obtained if one returns to thz original momentum-representation formula (8) for this 
matrix element-wherein A2 - kI2,2 - ie replaces A2 -Al2? in the denominator-and 
makes the conventional re-interpretation (Brenig and Haag 1963) of 

lim (A2 - k12,Z - ie)-l 

as E -+O when A2 = kl2?. This one-dimensional &function contribution to 
T(&, -+ k,), if inserted into equation (1) and re-interpreted along the lines of equa- 
tion (3), would yield a contribution to eir proportional to 74/3;  a simple geometrical 
argument shows this is precisely the 7-dependence one expects to observe if the 
experimentalist measuring the three-body scattering rate does not so arrange his 
apparatus that actual double-scattering events are excluded. I n  other words, in the 
configuration-space approach an unwanted S(k12i2 - A2) contribution to P ( k ,  -+ k,) 
is obtained only because a mathematically unjustified manipulation has been performed ; 
however, the result of this unjustified manipulation turns out to have a physically 
sensible interpretation. The same remarks can be made concerning other divergent 
expressions which arise in the configuration-space formulation of scattering theory; 
in general these divergences arise because of invalid mathematical operations, but 
lead to physically interpretable results nevertheless. 

Finally one notes that the Faddeev reformulation of the Lippmann-Schwinger 
equation in no way mitigates the reaction rate prediction complications associated 
with the double-scattering diagrams figure l(b). In  fact, if the Faddeev equations 
(Faddeev 1961) are written in the form (using Faddeev's notation in essence) 

a(') = - G23V23#i- GFT2,(W2)+ W3)), etc. 

then it can be seen that 

- - a);?)+ @;y+ a;(,+)+ (Did(+).  
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Excitation and ionization of hydrogen 
by hydrogen-atom impact 

1970 a) of the collision process 

at thermal energies, where p and q den0 
B, the incoming projectile atom A is as 
electron e, weakly bound to its parent i 
electron-ion pair is either increased o 
excitation respectively. The  derived cross section fo 
A elastic scattering cross section as a par 
independent and given by its value at t 
collisions (Bates and Khare 1965). With increase to interme 
impact, however, this choice becomes inappropriate and the corre 
(quantal) differential cross section for e-atom collisions must be 
above treatment has been modified (Flannery 1970 b, in preparation) 

-excited states of the target-atom 
elastically with the atomic 
the internal energy of the 

ained the electron-atom 
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the additional channels 

! 
and \ (3) 

in which the ionization or excitation of the target, can remain 
accessible states Z, thus giving rise respectively 

still satisfactory since the interaction between 
compared with the Coulombic interaction 
+. The  overall description is termed semi- 

A interaction can be furnished 
factors or from other similar 
collision is treated by classical 

the application of this semi- 

(4) 

the cross sections. For these neutral-neutral 

( 5 )  

hydrogen of an electron of 
and Massey 1965) 

and of the excitation of the second quantuk level (n = 2) of hydrogen, 

H(ls)+H(ls)  -+ 

with the incident atom remaining in the 
The  quantal cross section for the 

energy E atomic units through an 

where a, is the atomic unit of length and where electronaxchange is neglected. By 
inserting (6) into equation (17) of an earlier paper (F lanne4  1970 b), the integration 
between the angular limits # * , introduced to yield a specifieq energy change, can be 
performed analytically to yield (instead of equation (23) of that paper) 

(7) 
)J- {(cos#+ - cos$)(cos$- 

with 
A -;(COS#+ +cos#-) 

x ___ JqA) = -_____ 
{ (A  - cos#+)(A - 

where A is set equal to 1 
(6) reduces to the Rutherford scattering formula while (7) becomes identicahto the 
expression used for excitation by charged particles. The  subscqucnt analysk in- 
volving the use of (7), follows that previously outlined (Flannery 1970 b) andi%the 
excitation and ionization cross sections so derived satisfy the principle of detai4d 
balance. \ 

Figures 1 and 2 display the calculated ionization and the IZ = 2 excitation cross'. 
sections for (4) and (5) respectively, together with the Born results of Bates and Griffing ';,, 

\ 

\ 


